Tolerance to the antinociceptive effects of peripherally administered opioids. Expression of beta-arrestins.
نویسندگان
چکیده
Tolerance to peripheral antinociception after chronic exposure to systemic morphine was assessed in mice with chronic CFA-inflammation; cross-tolerance to locally administered mu, delta and kappa-opioid agonists and levels of beta-arrestins in the injured paw, were also evaluated. Tolerance was induced by the subcutaneous implantation of a 75 mg morphine-pellet, and antinociception evaluated with the Randall-Selitto test, 5 min after the subplantar injection of morphine, fentanyl, buprenorphine, DPDPE, U-50488H or CRF. Experiments were performed in the absence and presence of CFA-inflammation, in animals implanted with a morphine or placebo pellet. Beta-arrestin protein levels were determined by western blot. In mice without inflammation, subplantar opioids did not induce antinociception, while during CFA-inflammation, all drugs generated dose-response curves with an order of potency of: U-50488H < DPDPE < morphine < buprenorphine < fentanyl << CRF. During CFA-inflammation plus morphine-pellet, the potency of fentanyl decreased 1.25 times, while that of DPDPE, U-50488H and CRF diminished approximately 2.5-4.3 times. For each drug, the ratio between the ED(50)'s in tolerant and naive animals, was significantly higher than 1 (except for buprenorphine and fentanyl), demonstrating partial cross-tolerance to systemic morphine. Inflammation induced a twofold increase in beta-arrestin expression (p<0.01), and the levels decreased after acute morphine exposure (p<0.05). Tolerance did not alter beta-arrestins, but partially prevented the increase induced by inflammation. The results suggest that peripheral beta-arrestins could facilitate peripheral OR-desensitization and tolerance development. Clinically, the experiments could be useful to establish the effectiveness of local opioid administration in patients with musculoskeletal pain, chronically receiving morphine analgesia.
منابع مشابه
The Involvement of Non Opioidergic Mechanism in the Antinociceptive and Antilocomotive Activity of Bacopa monnieri
A hydroethanolic extract (HE-ext) of Bacopa monnieri (BM) was studied for antinociceptive effect in the animal models of acetic-acid-induced writhing test and antilocomotive effect in mice. Standard centrally-acting analgesic, morphine (MP), and peripherally-acting one, diclofenac (Diclo), were also tested along with the extract for comparison. The extract exhibited significant antinociceptiv...
متن کاملنقش سلولهای گلیا در ایجاد دردهای نوروپاتی و بروز پدیده تحمل / پردردی اپیوئیدها
Common cellular and molecular mechanisms are not only involved in the development of neuropathic pain caused by neurological damage but also in the occurrence of the tolerance/hyperalgesia phenomenon caused by chronic use of opioids. It seems that the activation of the neuroimmune system in the brain and spinal cord is one of the most important mechanisms involved in the initiation and mainte...
متن کاملRelative opioid efficacy is determined by the complements of the G protein-coupled receptor desensitization machinery.
G protein-coupled receptor regulation by G protein-coupled receptor kinases and beta-arrestins can lead to desensitization and subsequent internalization of the receptor. In in vitro and cellular systems, beta-arrestins do not seem to play a major role in regulating micro opioid receptor (microOR) responsiveness. Removal of the betaarrestin2 (betaarr2) gene in mice leads paradoxically to enhanc...
متن کاملMorphine-activated opioid receptors elude desensitization by beta-arrestin.
mu opioid receptors are targets of native opioid peptides and addictive analgesic drugs. A major clinical liability of opiate drugs is their ability to cause physiological tolerance. Individual opiates, such as morphine and etorphine, differ both in their ability to promote physiological tolerance and in their effects on receptor regulation by endocytosis. Here, we demonstrate that arrestins pl...
متن کاملAntinociceptive effects of maprotiline in a rat model of peripheral neuropathic pain: possible involvement of opioid system
Objective(s): Neuropathic pain remains a clinical problem and is poorly relieved by conventional analgesics. This study was designed to determine whether maprotiline administration was effective in alleviating symptoms of neuropathic pain and whether the antinociceptive effect of maprotiline mediated through the opioid system. Materials and Methods: Neuropathic pain was induced by chronic cons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain research
دوره 1248 شماره
صفحات -
تاریخ انتشار 2009